Understanding Computational Thinking

Technologies Education
Everybody in this country should learn how to program a computer...
Systems Thinking

Computational Thinking

Project Based Learning
Systems Thinking

Computational Thinking

Understanding the problem to be solved?
Systems Thinking

Computational Thinking

Thinking about the problem as a system
Vehicle Example

Design a better, faster and cooler F1™ car of the future
Clothing Example
Computational Thinking
Abstraction
Data & Information Systems
Algorithms and Programming
Digital Systems
Implications and Impacts
Shelter Example
Systems Thinking

Computational Thinking

Other ways of thinking about the problem and possible solutions
Computational Thinking
Abstraction
Data & Information Systems
Algorithms and Programming
Digital Systems
Implications and Impacts
Procedural Thinking
Intellectually challenging and engaging problems remain to be understood and solved. The problems and solutions are limited only by our own curiosity and creativity.
Computational Thinking
Computational Thinking

The curriculum is designed so that students will develop and use increasingly sophisticated computational thinking skills, and processes, techniques and digital systems to create solutions to address specific problems, opportunities or needs.

“Computational Thinking is the new literacy of the 21st Century”

— Jeannette M. Wing
Computational Thinking

Computational thinking is a process of recognising aspects of computation in the world and being able to think logically, algorithmically, recursively and abstractly. Students will also apply procedural techniques and processing skills when creating, communicating and sharing ideas and information, and managing projects.
Key Concepts
Abstraction, which underpins all content, particularly the content descriptions relating to the concepts of data representation and specification, algorithms and implementation.
Abstraction

Abstraction involves hiding details of an idea, problem or solution that are not relevant, to focus on a manageable number of aspects. Abstraction is a natural part of communication: people rarely communicate every detail, because many details are not relevant in a given context. The idea of abstraction can be acquired from an early age. For example, when students are asked how to make toast for breakfast, they do not mention all steps explicitly, assuming that the listener is an intelligent implementer of the abstract instructions.
Central to managing the complexity of information systems is the ability to ‘temporarily ignore’ the internal details of the subcomponents of larger specifications, algorithms, systems or interactions. In digital systems, everything must be broken down into simple instructions.
Data collection, representation and interpretation

Data collection (properties, sources and collection of data), data representation (symbolism and separation) and data interpretation (patterns and contexts)
Data collection, representation and interpretation

The concepts that are about data, focus on the properties of data, how they are collected and represented, and how they are interpreted in context to produce information. These concepts in Digital Technologies build on a corresponding Statistics and Probability strand in the Mathematics curriculum.
Data collection, representation and interpretation

The Digital Technologies curriculum provides a deeper understanding of the nature of data and their representation, and computational skills for interpreting data. The data concepts provide rich opportunities for authentic data exploration in other learning areas while developing data processing and visualisation skills.
Data collection describes the numerical, categorical and textual facts measured, collected or calculated as the basis for creating information and its binary representation in digital systems.
Data collection, representation and interpretation

Data collection is addressed in the processes and production skills strand. Data representation describes how data are represented and structured symbolically for storage and communication, by people and in digital systems, and is addressed in the knowledge and understanding strand.
Data interpretation describes the processes of extracting meaning from data and is addressed in the processes and production strand.
Specification, algorithms and implementation

Specification (descriptions and techniques), algorithms (following and describing) and implementation (translating and programming)
The concepts specification, algorithms and implementation focus on the precise definition and communication of problems and their solutions. This begins with the description of tasks and concludes in the accurate definition of computational problems and their algorithmic solutions. This concept draws from logic, algebra and the language of mathematics, and can be related to the scientific method of recording experiments in science.
Specification describes the process of defining and communicating a problem precisely and clearly. For example, explaining the need to direct a robot to move in a particular way.
An algorithm is a precise description of the steps and decisions needed to solve a problem. Algorithms will need to be tested before the final solution can be implemented. Anyone who has followed or given instructions, or navigated using directions, has used an algorithm.
These generic skills can be developed without programming. For example, students can follow the steps within a recipe or describe directions to locate items. Implementation describes the automation of an algorithm, typically by using appropriate software or writing a computer program. These concepts are addressed in the processes and production skills strand.
Digital systems

Digital systems (hardware, software, and networks and the internet)
The digital systems concept focuses on the components of digital systems: hardware and software (computer architecture and the operating system), and networks and the internet (wireless, mobile and wired networks and protocols).
Interactions and impacts

Interactions (people and digital systems, data and processes) and impacts (sustainability and empowerment).
Interactions and impacts

The interactions and impacts concepts focus on all aspects of human interaction with and through information systems, and the enormous potential for positive and negative economic, environmental and social impacts enabled by these systems. Interactions and impacts are addressed in the processes and production skills strand.
Interactions and impacts

Interactions refers to all human interactions with information systems, especially user interfaces and experiences, and human–human interactions including communication and collaboration facilitated by digital systems. This concept also addresses methods for protecting stored and communicated data and information.
Interactions and impacts

Impacts describes analysing and predicting the extent to which personal, economic, environmental and social needs are met through existing and emerging digital technologies; and appreciating the transformative potential of digital technologies in people’s lives. It also involves consideration of the relationship between information systems and society and in particular the ethical and legal obligations of individuals and organisations regarding ownership and privacy of data and information.
Error Correction Example

YOU KNOW THIS METAL RECTANGLE FULL OF LITTLE LIGHTS?

YEAH.

I SPEND MOST OF MY LIFE PRESSING BUTTONS TO MAKE THE PATTERN OF LIGHTS CHANGE HOWEVER I WANT.

SOUNDS GOOD.

BUT TODAY, THE PATTERN OF LIGHTS IS ALL WRONG!

OH GOD! TRY PRESSING MORE BUTTONS!

IT'S NOT HELPING!
Search Example
Travelling Salesman

Brute-Force Solution:

\[O(n!) \]

Dynamic Programming Algorithms:

\[O(n^2 2^n) \]

Selling on eBay:

\[O(1) \]

Still working on your route?

[Shut up.]

[The image includes a link to the source: http://www.cosc.canterbury.ac.nz/csfieldguide/dev/dev/ComplexityTractability.html]
Harriet and Lexie
Year 5 students